Computing the envelope for stepwise constant resource allocations

Nicola Muscettola

NASA Ames Research Center
Moffett Field, California 94035
mus@email.arc.nasa.gov

Abstract

Estimating tight resource level bounds is a fundamental
problem in the construction of flexible plans with resource
utilization. In this paper we describe an efficient algorithm
that builds a resource envelope, the tightest possible such
bound. The algorithm is based on transforming the
temporal network of resource consuming and producing
events into a flow network with nodes equal to the events
and edges equal to the necessary predecessor links between
events. The incremental solution of a staged maximum
flow problem on the network is then used to compute the
time of occurrence and the height of each step of the
resource envelope profile. The staged algorithm has the
same computational complexity of solving a maximum flow
problem on the entire flow network. This makes this
method computationally feasible for use in the inner loop
of search-based scheduling algorithms.

Introduction

Retaining flexibility in the execution of activity plans is a
fundamental technique for dealing with the uncertain
conditions under which the plans will be executed. For
example, flexible plans allow explicit reasoning about the
temporal uncontrollability of exogenous events (Morris,
Muscettola, Vidal 2001) and the incorporation of
execution countermeasures within the flexible network.

instantiated schedules. This means that methods based on
complete enumeration are typically out of the question.
Lately, however, new techniques have been developed
(Laborie, 2001) based on direct propagation of
information on the temporal constraints of the plan. This
yields both an upper bound and a lower bound on the
resource level required by the plan over time. This
information can be used in various ways, e.g., to decide
when to backtrack (when the lower/upper bound interval
is outside of the range of allowed resource levels at some
time) and when a solution has been achieved (when the
lower/upper bound interval is inside the range of allowed
resource levels at all times). Bound tightness is extremely
important computationally since both as backtracking and
termination criteria it can save a potentially exponential
amount of search when compared to a looser bound.

A natural question is whether constructing thightest
possible resource level bounds is computationally feasible.
This paper answers this question in the affirmative. We
describe an efficient algorithm for the computation of a
resource level envelopa resource level bound such that
for each time there exists at least a schedule for the
activity plan that will consume the amount of resource
indicated by the bound. The algorithm is polynomial, with
complexity equivalent to solving a maximum flow
problem on a flow network of the size of the original

Tightly constrained schedules (e.g., schedules that assign activity plan.

a precise start and end time to all activities) are typically
brittle and it is very difficult to closely follow their
directions during execution. For an example of what
overly tight schedules can do to an intelligent execution
system, consider the “Skylab strike” (Cooper, 1996), when
during the Skylab 4 mission astronauts went on a sit-down
strike after 45 days of trying to catch up with the demands
of a fast paced schedule with no room for them to adjust to
the space environment.

A major obstacle to building flexible schedules, however,
remains the difficulty of accurately estimating the amount
of resources that a flexible plan may need across all of its
possible executions. This problem is particularly difficult
for resources with multiple capacity that can be both

consumed and produced. In the worst case large plans may

exhibit both a high level of activity parallelism and a large
number of required synchronization constraints among
activities. Most of the scheduling methods available to
date for this problem (Cesta, Oddi Smith, 2000) eventually
produce a fixed activity schedule, even if they make
substantial use of an activity plan’s flexibility during
schedule construction.

To appreciate the difficulty of precisely estimating
resource consumption, consider the fact that a flexible
activity plan has an exponential number of possible

In the rest of the paper we first introduce the formal model
of activity networks with resource consumption. Then we
review the literature on resource contention measures and
show an example in which the current state of the art in
resource level bounds is inadequate. Then we give an
intuitive understanding of our method to compute the
resource envelope. Then we establish the connection
between maximum flow problems and finding sets of
activities that have the optimal contribution to the
resource envelope. We then show that these sets of
activities compute an envelope. We then describe an
efficient envelope algorithm and its complexity. We
conclude discussing future work.

Activity Networks and Resource Consumption

Figure 1 shows an activity network with resource
allocations. The network has two time variables per
activity, a start event and an end event (eeg.ande,. for
activity A;), a non-negative flexible activity duration link
(e.g.,[2, 5] for activity A;), and flexible separation links
between events (e.d0, 4] from ese t0 €49). A time origin,

T, corresponds to tim® and supports separation links to
other events. We assume that all events occur afand

before an event . rigidly connected toTs. The interval path frome; to e in Pred(R). Alternatively, we can say
T.T.is thetime horizonT of the network. that an evente; precedes anotheg; in the precedence
<6 21> [2, 3] <Ee 27> graph ife; cannot be executed befoeg There are several
possible precedence graphs for a netwBkA way to
build one is to run an all-pairs shortest-path algorithm and
retain only the edges with non-positive shortest distance.
Smaller graphs can be obtained by eliminating dominated
edges, e.g., by applying dispatchability minimization
(Tsamardinos, Muscettola, Morris 1998). The cost of
computingPred(R) is bound byO(VE + V?1g V) where
V is the number of events artel the number of temporal
distance constraints in the original cR-STN. The use of
different precedence graphs may affect algorithm

<€s 31> Az <€ 32>

Te [30. 30] Te performance but does not affect the theoretical foundation
rnO[1,4] rs10[-7, -5] described here.
rx0[-1, 3] r0[1, 3] Considering again the activity network in Figure 1, Figure
r20[1,2] ra O[2, 4] 2 depicts one of its precedence graphs with each event

labeled with the time bound and the maximum allowed

Figure 1: An activity network with resource allocations. resource allocation.

Time origin, events and links constitute a Simple

Temporal Network (STN) (DeChtel’, Meiri, Pearl 1991) Resource Contentlon Measures
Unlike regular STNs, however, each event has an .) o
associatedhllocation variablewith real domain (e_g_rSl Safe execution of a flexible aCt|V|ty networks needs to

for event egs) representing the amount of resource avoid I’eSO!Jrce C_OntentiO!’], i.e., the pOSS|b|I|ty that for
allocated when the event occurs. We will call this some consistent time aSSIgnment to the events there is at
augmented networkR a piecewise_mstant _@source least One.time at which the tOtal amount of resource
allocation STN(cR-STN). In the following we will assume ~ allocated is outside the availability bounds. There are

that all allocations refer to a single, multi-capacity €ssentially two methods for estimating resource
resource. The extension of the results to the case of contention: heuristic and exact. Most of the heuristic

multiple resources is straightforward. An evegitwith techniques (Sadeh, 1991)(Muscettola, 1994) (Beck et al.,
negative allocation is aconsumer,while an e" with 1997) measure the probability of an activity requesting a
positive allocation is @roducer resource at a certain time. This probability is estimated

Note that an event can be either a consumer or a producer€ither analytically on a relaxed constraint network or
in different instantiations of the allocation variables (e.g., Stochastically by sampling time assignments on the full
event ey, for which the bound forr, is [-1, 3]). This constraint network. The occurrence probabilities are then

allows reasoning about dual-use activities (e.g., starting a combined in an aggregate demand on resources over time,
car and running it both make use of the alternator as a the contention measure. Probabilistic contention can give
power consumer or producer). Moreover, some events can & measure of likelihood of a conflict occurring. However,
have opposite resource allocation of other events (e.g., it is not a safe measure, i.e., the fact that it does not
vs. €19). This allows modeling reusable allocations, such as identify any conflict does not exclude the possibility that
power consumption by an activity. Note that this model the cR-STN could have a variable instantiation with
does not cover continuous accumulation such as change ofinconsistent resource allocation. Exact methods avoid this
energy stored in a battery over time. A conservative Problem and are based on the computation of sufficient
approximation can however be achieved by accounting for conditions for the lack of contention. (Laborie, 2001) has a
the entire resource usage at the activity start or end. We 900d survey of such methods. Current exact methods
will always assume that the cR-STN is temporally Operate on relaxations of the full constraint network. For

consistent. From the STN theory, this means that the €xample, edge-finding techniques (Nuijten, 1994) analyze

shortest-path problem associated R has a solution. how an activity can be scheduled relatively to a subset of
Given two eventse, and e, we denote with|ee| the activities, comparing the sum of all durations with a time
shortest-path frone; to e,. We will call a full instantiation interval derived from the time bounds of all the activities
of the time variables ifR a schedules(.) wheres(e)is the under consideration. Relying only on time bounds ignores
time of occurrence of evergaccording to schedule We much of the inter-activity flexible constraints and tend to
will call S the set of all possible consistent schedules for be effective only when the time bounds are relatively tight.
R. Each evene has a time boundet(e), It(e)], with et(e) Therefore algorithms that use these contention measures
= -IeTsl and |t(e): ITSel, representing the range of time tend to eliminate much of the ﬂelelllty in the aCtiVity
valuess(e)for all s S. Finally, given three events, e, network. (Laborie, 2001) goes further in exploiting the
and e;, the triangular inequalitjees| < |ees| + |ee| information about mutual activity constraints. One of the
holds. two metrics proposed in that paper is thHmlance

A fundamental data structure used in the rest of the paper constraint an event-centered approach that estimates
is the precedence graptPred(R), for a cR-STNR. This upper and lower bounds on the resource level immediately
is defined as a graph with the same eventRamnd such before and after each evemin the cR-STN. These bounds

that for any two events; ande, with |, & < O there is a precisely estimate the contribution of events that must

precedee and overestimate the contribution of events that
may or may not happen befom The over-estimate is
obtained considering only the worst-case situation in
which only the events that have the worst contribution
(producers for upper bounds and consumers for lower
bounds) happen befoee Although the balance constraint
better exploits the information in the activity network, the
bounds that it produce may be very loose for networks
with significant amounts of parallelism.

<[4,10],3> <[6,13],2>

<[3,9], -4>
<[1, 4], 4>
€1s

€e
<[5, 17], -4>

<[2, 11], -5>

<[3, 15], 3>

Figure 2: Precedence graph with time/resource usage.

For example, consider the activity graph in Figure 3,
consisting of two rigid chains af activities with the same
fixed duration and the same fixed activity separation, and
occurring on a horizonT wide enough to allow any
feasible ordering among them. Each activity has a

for a producer and negativec(e), for a consumer. More
formally, given a schedulsllS and a timet O T, E4t) is
the set of evente such thats(e)< t. For any subsef of
the set of events iR, E(R), we will call theresource level
incrementA(A) =Zc. eon C(€") — c(€). The increment is
also defined for the empty set &[0)=0. Therefore, the
resource levelat time t due to schedules is Lg(t) =
A(E4(t)). The maximum resource envelo timet is
L max(t) = maxgns (L &(t)). Similarly, theminimum resource
envelopeat timet is Lyin(t) = minggs (Lg(t)). Our goal is
to compute both . andL i, OverT.

2n

Figure 3: Over-constraining of activity network flexibility.

In the following sections we will rigorously develop an
efficient algorithm to compute envelopes. Here, we want
to give an intuitive account of what is involved and of the
key complexity of envelope computation by analyzing
some simple examples.

First consider a single activity with a reusable allocation
(Figure 4a)). We could build the envelofe,.x by asking

reusable consumption of one unit and the resource has two at each timeOT whetherA; can happen before, after or

available units of capacity over time. It is clear that all the
executions of this activity network are consistent with the
resource constraint, since the maximum resource
consumption is one unit of capacity for each chain at any
time. However, the balance constraint will always detect
an over-allocation unless the network is further
constrained in one of two ways: a) the start activityf

one chain occurs no later than the start of the second
activity of the other; or b) more than two activities overlap
and there is an activitk on one chain that must start
between the end of activityand the start of activity+2

on the other chainFigure 3. These additional constraints
unnecessarily eliminate a large number of legal executions
of the activity network.

The cause of the inability of the balance constraint to
correctly handle this situation depends on its inability to
account for the constraint structure of parallel chains
simultaneouslsince it can only take advantage of the full
structure of the network for chains of predecessors. In this
paper we will show that it is possible to effectively Ledée
precedence constraints in the network digmeously
leading to the estimate of the best possible upper bound for
resource consumption.

Resource Envelopes
Our approach is to build the tightest possible resource-

centered exact contention measure. This means that for

any possible time value we will compute the maximum
and minimum possible consumption among all possible
schedules ofR. Note that the maximum (minimum)
overall resource level induced bR for any possible
schedule can always be obtained by assigning each
allocation variable to its maximum (minimum) possible
value. For any specific value assignment to the allocation
variables, each event has a constant weight: posit{e),

can overlapt. If the activity starts with a resource
production Figure 4b)), then we wan#; to start, contain

or end att. This is always possible betweeri(e;) and
lt(e,9). During this interval the resource envelope Is
while outside of it it isO. Conversely, ifA; starts with a
consumer Figure 4c)), then we want for the activity to
happen completely before or afterThis is possible only
beforelt(e;s) and afteret(e,). The envelope will bed at
every time except betwedt(e,s andet(e) where it will
be—1. This suggests a strategy that looks at each event and
considers the incremental contribution of the event's
weight to the envelope at the earliest time for producers or
at the latest time for consumers.

When computingL ax for a complex network, however,
events cannot usually be scheduled independently.
Consider the simplest network, i.e., a rigidly linked pair of
activities with a reusable resource allocatiGig(re 5a)).

In this case the time of occurrenceef ande;s are bound
together. Looking at the contribution to the envelope of
each event in isolation, we would want to add the
contribution of e as late as possible since it is a
consumer, and the contribution efs as early as possible,
since it is a producer. The decision on which time to
choose depends on the total contributionboth events.
The total contribution will be added dti(e,) if the total
contribution is a consumptiorFigure gb)) or atet(es) if

the total contribution is a productiorFigure 5c)). Note
that in both cases,s and ez are pendingat the selected
time, i.e., their contribution has not been added yet to the
envelope but they both could occur at the selected time.
This suggests a strategy that considers all pending events
at either the earliest time or the latest time of some event
and schedule those that either must be scheduled or are
advantageous, i.e., contribute overall with a production of
resource.

Now consider the network iFigure 1and the event time
bounds, maximum resource allocation andegadence
graph in Figure 2 Assume that we want to compute
Lmax(3), the maximum envelope at time 3. The set of

those inOy irrespective ofs andt. With respect to the
events inRy, we can see that if an event is scheduled to
occur at or beforé then all of its predecessors (according
to Pred(R)) will also have to occur at or befote In other

events that may be scheduled before, at or after time 3 is words, it is possible to find a set of eventsOl Ry such

{e1s €re &35 €3¢ €. However, of these onlfese, ess €5,
€44 are pending since it is advantageous to consigleat
its earliest timel. The subset of events that we could
consider at time& are all those that will have to occur at or
before3 assuming that we select for some set of events to
occur at3. These subsets afesd, {€14}, {€3e &3¢ and{eys
€1e 636 6. Unfortunately, each of these subsets has a
negative weight and therefore none of them is considered
at time 3. At time 4 the set of pending events is
augmented withe,s and the total contribution of the new
subset of pending even{s,s, €4, €16 €36 €34 IS POSitive.

<[0, 3], n> <[5, 10], -n>

Az
(@)

€1s €le

A =1

1
0 0™ ‘ 3|_|5
1

(b) (©

r=-1

>

Figure 4: Maximum resource envelope for a single activity.

that the events,00Ry that are scheduled no later tham

s are those such thdge,| < 0 for somee, O X. We call
this thepredecessor saif X, Px. Therefore, the resource
level at timet for a given scheduls is the sum of the
weights of events i€y and inP.

<[0, 3], n> <[4, 10], -n> <[5, 11], n><[8, 14], -n>

& Az & 11 & Az G
A 2=l @ rn=1,r=2
4 A
1 \—‘ 1 f
0 0 1 0 5 T

(b) (©

Figure 5: Maximum envelope for two chained activities.
It is easy to verify that given two predecessor d8tsand
Py, bothPx n Py andPx OPy are also predecessor sets.

Resource Level Increments and Maximum Flow

Since we are interested in the maximum resource level we
want to find the predecessor set with maximum resource

The selection of a maximally advantageous subset among !€vel increment. We will do so by finding a maximum
the pending events is the key source of complexity of flow for an auxiliary flow network built fromRy and

envelope calculation. An exhaustive enumeration of all

subsets can obviously be very expensive. Fortunately we

can make very good use of the information in the
precedence graph. It turns out that this problem is
equivalent to a maximum flow problem solved on an
appropriate auxiliary flow network built on the basis of
Pred(R). We will discuss this rigorously in the rest of the
paper.

Calculating Maximum Resource
Level Increments

Consider now an intervaHOT. We can partition all
events inR into three sets depending on their relative
position with respect tdd: 1) the closed event€y with

all events that must occur strictly before or at the start of
H, i.e., such that thait(e) < start(H); 2) the pending
eventsRy with all events that can occur within or at the
end of intervalH, i.e., such thalt(e) > start(H) andet(e)

< end(H); and 3) theopen event®©y with all events that
must occur strictly afteH, i.e., such thaét(e) > end(H).

The setRy could contain events that can be scheduled
both inside and outsideél. If H=T, then Cy= O, Ry =
E(R) and Oy=0. The intervalH could be reduced to a
single instant of time, i.eH=[t, t]. In this case we will
use the simplifying notationCi=Cj;, 3, R=Ry 3 and
Ot:O[l, t-

We are interested in a particular kind of subsetRyf.
Assume that we wanted to compute the resource level
increment for a schedukeat a timetOH. This will always
include the contribution of all events i@y and none of

Pred(R).

Resource Increment Flow Problem: Given a set of
pending eventR, for a cR-STNR, we define the resource
increment flow problenfr(Ry) with sourcegand sinkr as
follows:
1.For each evene /Ry there is a corresponding node
eEF(RH)
2.For each event” [Ry, there is an edger— € with
capacityc(e”).
3.For each evene 7Ry, there is an edge - r with
capacityc(e), i.e., the opposite af’s weight inR .
4.For each pair ofe; and e, with an edgee; - &, in the
precedence grapfred(R) there is a corresponding
link e - & in F(Ry) with capacity +eo.

Internal flow (precedence constraints)
Incoming flow (producer events)
———— Outgoing flow (consumer events)

Figure 6: Resource increment flow problem.

As an exampleFigure 6shows the auxiliary flow problem
for Ry relative to the activity network iffigure 1

A detailed discussion of flow problems is beyond the scope
of this paper (for a complete treatment see (Cormen,
Leiserson, Rivest 1990). Here we highlight some
fundamental concepts and relations that we will use. We
will indicate asf(e;, &) the flow associated to a link
e1-& in F(Ry). The flow function is skew-symmetric,
i.e., f(ey, €) = - f(e1, &). Each flow has to be not greater
than the capacity of the link to which it is associated. For
example, referring to the flow network figure 6 0 < f(o,

€¢ < 2, 0 < f(ege T) < 4 andf(ese, €5 = 0. Note that a
flow from e, to e; can be negative only if the flow network
contains an edge,-e; with positive capacity. We also
use an implicit summation notatidA, B), whereB and

A are disjoint event sets iR(Ry), to indicate the flowf(A,

B) = Z.oaZpoef(a, b). Consider now any subset of events
AORy and let us callA _the set of eventé = Ry-A. The
following flow balance constraint always hold¥{ o}, A)
=f(A, {1}) + f(A, A). The total network flow is defined as
f({o}, Ru) = f(Ry, {1}). The maximum flow of a network

is a function f,.x such that the total network flow is
maximum.

The fundamental concept used by all known maximum
flow algorithms is theresidual network.This is a flow
network with an edge for each pair of nodesH(Ry) for
which theresidual capacity,.e., the difference between
edge capacity and flow, is positive. Each edge in the
residual network has capacity equal to the residual
capacity. For example, considering the networkFigure

6, assume thafi(e;,, T) = 3 andf(o, &) = 2. The residual
network for that flow will have the flowing edgesie— T
with capacityl, T- e with capacity 3 ande— o with
capacity 2. Also note that any residual network for any
flow of F(Ry) will always have an edge of infinite capacity
for each edge in the precedence gr&phd(R).

In this paper we will make use of three different kinds of
paths in the residual network. The first is angmenting
path connectingo to T. The existence of an augmenting
path indicates that additional flow can be pushed from
to 1. Several maximum flow algorithms operate by
searching for augmenting paths. Alternatively, the lack of
an augmenting path is the condition that indicates that a
flow is a maximum flow. The second kind of path is a
flow-shifting path a loop connecting to T which does not
affect the overall flow in the network. Finally, the third
kind is areducing path,.e., a path front to g. Pushing
flow through a reducing path reduces a network’s flow.
We now establish the relation between the resource level
incrementA(A) and any flow inF(Ry). We define the
producer weight inA as c(A") = Zer g a C(€) and the
consumer weight iPA asc(A) = Z.. g a C(€). We also
define theproducer residualin A asr(A") = c(A") -
f({c}, A), i.e., the total residual capacity of the edge
incoming A from s, and theconsumer residuain A as
r(A7) = c(A) — f(A, {1}). The following relation holds.

Lemma 1: A(A) =r(A™) —r(A) + f(A, A).

Proof: A(A) = c(AY) — c(A) = (c(A") — f{a}, A)) — (c (A"
) - f{a}, A) = r(A") — (c(A) - f(A, {1}) - (A, A)) =
HA™) = r(A) + (A, A). O

We now focus on predecessor sets suchas

Lemma 2: f(Px, Px) < 0. Moreover, f(Px, Px)=0 if and
only if f(e1, &)=0 for eache;[Px and e;[Px.

Proof: From the definition of preecessor there is no edge
& -6 in F(Ry) with e 0Py and e;00Px. Therefore,f(e,,

e) < 0 andf(Px, Px) < 0. The second condition can be
demonstrated by observing that the sum of any number of
non-positive numbers i8 if and only if each number i6.

g

Another way to express Lemma 2 is thi@Py, Py)=0 if
and only if there is no linke; » & in the residual network
wheree, 0Py ande,[0P.

Corollary 1: A(Py) s1(Px") - r(Px).
Proof: Immediate from Lemma 1 and Lemma 2.

Maximum flows and maximum resource level
increments

We are now ready to find the maximum positive resource
level increment. Note that we are not interested in event
sets with negative resource increments since, as we
discussed before, we will only account for events in our
resource envelope simulation if they have a positive
contribution. If they do not, we will take them into account
when we must, i.e., when their temporal upper bound
becomes lower or equal to the current simulation time.
First we address the problem of whetli&y contains a set

of predecessorE’ with positive resource level increment,
i.e., A(P") > 0. To do so we will make use of a maximum
row fmax Of F(Ru). We will indicate with rpa(A)
producer/consumer residual computed fér.. The
following fundamental theorem holds.

Theorem 1: Given a partial plan Ry, there is a
predecessor seP* such that A(P)>0 if and only if
rmax(RH) >0.

Proof: O : We prove that if there is ® such thatA(P')>
0, thenr(Ry") > 0. Assume thatr (Ry") = 0. This
means that for any predecessors subBgtwe have
maX(PX) = 0. From Lemma 2 we would havA(P) <
—rmax(P) <0, that is a contradiction.

EI We prove that ifr ., (Ry") > 0 then we can identify a
P" such thatA(P)>0. If rmax(RH ") is positive, there must
be somee” such that ,(€") > 0. Let’s selectP’ as the set
of events reachable by some path in the residual network
originating frome”. The following three properties hold.
1.P.is a predecessor set.

If not, there will be an eveng, 0P such thajee)| <0
for some evene, 0P . From the definition ofPred(R),
however, we know that there must be a pattried(R)
from e, to &. Since this path will be present iR(Ry)
with all links having infinite capacity, the path will also
always be present in any residual network for any flow.
Therefore there is a path in the residual network going
from €' to e, to &, ande,[IP, which is a contradiction.
.rmax(P =0.

If not, there will be an everg’ 00 P* such that nax(€) >

0. We can therefore build an augmenting pathi-@R,)

as follows: 1) an edges—e" with positive residual
capacityr a(€"); 2) a path in the residual network from

e’ to €, which exists by definition oP"; and 3) an edge
€ -1 with residual capacity ma(€). The existence of
the augmenting path means ttiax is not a maximum
flow, which is a contradiction.

3. fradP, P) =
SinceP is a predecessor set, from the Jproof of Lemma
2 we know than‘max(P P) <O0.If fmaX(P P) <0, |t
means that there is a pair of evergglP’ and ;0P
such thatf.x(€1, &) < 0. This means that the residual
capacity frome; to &, is positive and therefore there is
an edgeel_.ez in the residual network. But this means
thate,0P', which is a contradiction.

Applying the propertres oP" to the relation in Lemma 1

we obtamA(P) = I'max (P) — rmaX(P) + fmax(P P) =

Fmax(P™) 2 I'max(€7) > 0.0

It is now easy to find the predecessor d&t.« with
maximum positive resource level increment.

Theorem 2: Consider all eventse’, Ry such that

rmad(€7) > 0 and consider the event SBhay = [esi P

where P, is the set of events reachable frogh in the

residual network of f,.. Then Ppha is a set of

predecessors iRy with maxrmumd(PmaX) > 0.

Proof: Each of the P, has the properties proved in

Theorem 1. We show thﬁ{max also has those properties.

1.Being the union of predecessor seB.x iS also a
predecessor set.

2.We know thatrmax(e) = 0 for eache O P';. Therefore
rmax(P max) -

3.From Lemma 2 we know that sinég";, P, 1)=0, there is
no flow from events mP to events |nP Therefore
there is aIso no flow from events |ﬁ max = Nj P to
events in P'ae Hence, from Lemma 2f(P maxe
P ma)=0.

ThereforeA(Prmay) = I'max(Pmax) > 0.

Moreover, since by constructid®,., contains alle”; with

rmax(€7) > 0. Therefore, for any other predecessorRgft

iS Imax(Px) € ImadP max). Hence,A(Px) € Imax(P'x) —

F max(P'x) < rmax(|:>+x)< rma><(|:>+ma><) = A(Pmay)- O

So far we have constructd®l.x from a specific maximum
flow for F(Ry). However, it turns out thaPy. IS unique
for all maximum flows ofF(Ry). MoreoverPax contains

In fact, it must ber;(P.;")=0 sincePyax; must contain all

e" events withr;(€") > 0. AlsO, Anax= Ii(Pmaxi)=A(Pmaxk)

< Ii(Pmaxk) — Ti(Pmaxk) € li(Pmaxk) Which implies
ri(P.«")=0. But this means that the flow iA(P;.y) is self
contained, i.e., there is no edge in the residual network of
flow faxithat exitsP;,x. Therefore, in this flow none of
the events inP., is reachable from are" event and
thereforeP,=0. With a symmetric argument we can see
that P;=0. Therefore for any andk it must bePpay=
Pmaxk = Pmax The minimality of Pn, derives from
applying to Pmax — PY the same argument used to
demonstrate that., is empty where PP0OP,. is a
predecessor graph with maximum positive resource level
increment’]

Building Resource Envelopes

So far we know that the resource level at titni@ H for a
given scheduls is the sum of the weights of the events in
Ch plus those of the events in some predecessoPssét

is not immediatelyobvious that the converse also applies,
i.e., that given any predecessor Bgtone can determine a
time tx 0O H, the separation timgand a schedulsy, the
separation schedulesuch that all and only the events in
CwOPx are scheduled at or before titie The reason this

is not obvious is that events argllsconstrained by upper
bound constraints, i.e., the metric links that are not
included in Pred(R). Scheduling some event too early
with respect tdyx may therefore force some event to occur
before timety whether the event is a successoPired(R)

or not. We will show that indeed we can find a separation
time and schedule faany Px and therefore also foPax.

For the latter we will show thaty represents one of the
times at which the resource level is maximum olefor
any schedule. This will yield the resource envelbpgy if

we reduceH to a timet and scart over the horizor.

Latest events

The first step is to identify the events Py that will be
scheduled at timéx. We say thak is alatest evenbf Py
if it is not a strict predecessor of any other eventHg
i.e., for anye; O Py |e; e]= 0. There must be at least one
latest event inPyx. If not, for every eventg, [0 Py, there
would be an eventg [0 Px such thate g | < 0. But this

the minimum number of events among all predecessor setswould mean that it would be possible to create a cggle

with maximum positive resource level increment.

Theorem 3: For any solution of the maximum flow
problem for F(Ry), Pmax IS the minimal predecessor set
with maximum resource level incremedi(Ppay).

Proof: Consider the seffax} with i=1, ..., n of all n
different maximum flows of F(Ry). Since each
correspondindPmay IS @ maximum positive resource level
increment setsA(Pmaxi) = Amax- AlSo, given two distinct
maximum flowsi and k, we havePyaxi = Piak O Py
whereP; = Pmaxi N Pmaxk @NdPyi= Praxk = Pmaxi. In the
following we will indicate withrj(e) the residualr nax(€)
computed in flowf may,.

First we observe that for any two distincandk, A(P;nx)=
Anax. In fact, Ph¢ is a predecessor set anmdPi)=
rk(Pink-)zo- ThereforeA(Pink): ri(Pink+): rk(Pink+). We
need now to show that(Pink") = ri(Pmaxi’) = Ii(Pmaxk) -

> ep > ... D g linked by links|ggy ek:1)| < 0, which

is a contradiction to the hypothesis of temporal
consistency oR. We will call Py . the set of all latest
events inPx. Also, we definePx cany = Px — Px jate-

The following properties hold for the temporal relations
between events iRy, ate, Px, earty aNdPx.

Property 1: For any two event®;, & [7Px jae |€16] 20
and|e; e | =20.

Property 2: For any two event®, [/ Px and e, [7Px jate

|e; e > 0.
If not, e; would belong tdPy by the definition ofPy.

Property 3: Any evene;/[7 Py cany iS @ strict predecessor
of somee; [7 Py jate: 1-€., |&€4| < 0.

If not, consider any two events,e; [7Px cany. FOr anye; it
would be|ee;|=0 and |ee;|=0. Therefore 0=|ee;| < |&e]

+ |lees| = |aes], i.e., [egs| = 0. Since this would be true for
any pair of events irfPxcany and for all distances between
any event inPxcany and any event irPy jae, all events in
Px,early Would be latest events, i.62x,cany,=0.

Separation Time for Latest Events

We now show how to construct the separation titpet
which we will schedule all latest events.

Lemma 3: There is a time intervaltx min, txmax that is in
common among all time boundst(e), It(e)] with e 7

Py jare@nd such thastart(H) < tx max-

Proof: First, we show that there must be a time value in
common among all time bounds. If not, there would be
two eventse;, & O Py e Such thatet(e) > It(e,). From
the triangular inequality we also have thefe;| < - et(e)

+ lt(e,) < 0, which is inconsistent with Property 1. Now,
assumestart(H) > tx max. By the way the intervalty min,

tx max] IS constructed, there must exist an evemt Py s
such thatlt(e) = tx max- FOr this event it would bét(e) <
start(H) that is a contradiction witle belonging toRy.O

We definetyx= max (start(H), tx min), With tyx = start(H) if
Px=0, in which casety = start(H). We can then show
that the time bound of each event®y indicates that each
of them can be scheduled aftgr

Lemma 4: For any evene 7Py, It(e;) > tx

Proof: By definition of Ry it must belt(e) > start(H). So
we only need to consider the case in whigh= tyx min >
start(H). In this case there is at least one evenil Py jae
such thatet(e;) = tx min. For this event it ide, e|< - et(e)
+ lt(e). From Property 2 we know thaje, e| > O.
Therefore|t(e) = et(e) + |e e| > et(@) = tx, min.0

Separation schedule for predecessors

We now show how to build a separation schedsléor Py
andty, i.e., a schedule such thgt(e) < tx for edCyOPx
and s¢(e) > tx for edPxOOx. Note that the following
discussion holds also Fx=0.
We will do this with the following algorithm.

1.Schedule ale’0d Py ja atty, i.e.,5¢ (€") = tx.

2.Propagate time througR obtaining new time bounds

[et'(e), It'(e)] for eachedE(R).
3.Schedule all evente”] E(R) —Pxae at their new
latest time, i.e.s¢(e”) = It’ (€”).

To show thatsk is a schedule we need to see that it is
consistent with respect t&R. We see that step 1 is
consistent since: 1)y belongs to the intersection of all
latest event time bounds; 2) since for any pair of latest
events|e |20, scheduling one dty does not prevent any
other latest events to be scheduled at tignas well. Step
3 above is also consistent since it is always possible to
schedule all events at their latest times without temporal
repropagation.
Now we need to show that the property defining a
separation schedule is satisfied fe;. Note that we
already know that it is satisfied for events By jae. By
definition of Cy and Oy, we also know that it is satisfied

for events in these two sets. Therefore, we need to show

that it is satisfied folPx eany andPx.

a)lt'(e) < tx for all e O Px eary
According to Property 3 we can pick an evenllPy jate
that |e; e|] < 0.From the triangular inequality we have
It'(e) <lt'(ey) + |ere] <It'(ey) = tx.

b)It'(e) > tx for all ed Px.
From Lemma 4 we know that before the re-propagation
it was lt(e) > tx. After the propagation, either
It'(e)=lt(e), in which case the condition is satisfied, or
It'(e) has changed with a propagation starting from
some evene [Py jae. SO it must beb’(e) = tx + |e€|
and since from Property [2e| > 0, It'(e) > .

We can now computk s Over the entire time horizoi.
Pmax(Ry) indicates that it is computed ovE(Ry).

Theorem 4: The maximum resource consumption for any
schedule oR over an intervalH 7T is given by4 (Cy) +

A(Pmax(Ry)) .

Proof: We know that at any timeéOH the events iRy

that are scheduled befoteare a predecessor se§. For

the resource level at tintet is alwaysA (Cp) + A(Px) <A

(Ch) + A(Pmax(Rn)), the latter being the resource level at
the separation time for the separation schedule. This is
true also ifPax(Ru) IS empty.]

There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible
consumption foR overT is equal toA(Pmax(Rr)).

resource

This means that estimating the maximum possible
resource consumption over time has the same complexity
of a maximum flow problem.

COI’O”&I’y 3: Lmax(t) = A(Ct)+A(Pmax(Rt))-

The last formula tells us how to compute the resource
envelope. We now need to find an efficient algorithm.

Efficient Computation of Resource Envelopes

From Corollary 3, the naive approach to compute a
resource envelope would be to iterate over all possible
tOT. We can improve the running time by considering
that we only need to compute,,x at times when eithet,

or R; changes. It is easy to see that this can only happen at
et(e) or It(e) for any edE(R). Therefore we need to re-
compute a maximum flow for a partial network i only
2ntimes, a substantial improvement oy&f.

The complexity of some known flow algorithms is
described inTable Cormen, Leiserson, Rivest 1990).
Note that the number of edgé&sis O(V*) where V is the
number of events antikx<2. Therefore the complexity of
maximum flow algorithm is alwayO(V* Ig'(V)) with
1<k<5 andj {0, 1}. Let us now consider the worst case
complexity of re-computing a flow aét(e)lt(e). In the
worst caseC; will remain empty at all times and the size
of eachR; will increase byl for each computation of the
flow. Therefore the worst case complexity of this method
is O(Zi-....vO(*g'())=0(V*™Mg'(V)), a polynomial of

higher order than maximum flow.

We can do better. Assume sorting all earliest datest
times in ascending order to yield a sgl), t(2), ...,
t(2n)}. Suppose now that when we compute the maximum
flow for F(Ry;) we make as much use as possible of the
maximum flow for F(Ry.1)). In this case we can come up
with an algorithm with the same worst-case complexity as
computing the maximum flow on the entire network.

Incremental Change of Pending Events

Before we introduce the algorithm, let us consider the
differences betweerRy; and Ryu.1y (1<i<n) The first
differenced(Cy;) = Ryi.1) — Ry is the sets of evenessuch
thatt(i) = It(e). They must move fronfR.1) to Cy;; at time
t(i). The second differencé)(Ry;) = Ry - Ry-1y are the
eventse such that(i) = et(e). They must move fron®y.y

to Ry at timet(i).

Figure 7gives a complete picture of how all relevant event
sets change at tini@). In this pictureEmax(t(i-1)) = Cyiy

O PmadRyi) is the set of events needed to compute the
resource envelope at tim#i—1). Ena(t(i)) = Cy O
Pmax(Ry()) is used to compute the resource envelope at time
t(i), with Cyi) = Cyiyy + O(Ct(i)). The differenceEma(t(i))

— Enax(t(i-1)) can be separated into two disjoint sets
O(Ci())— Pmax(Ri(-1)) andPmax(Ry)) — Pmax(Ry-1y)- The goal

of the efficient envelope algorithm is to identify the set
Pmax(Ri)) — Pmax(Ry-1y) with less effort than computing
Pmax(Riy) and Prax(Ryi-y) with separate maximum flow
computation and then differentiating them.

Ford-Fulkerson OED
Edmonds-Karp o(vh

Simple preflow-push o(E)
Preflow-push o)
Goldberg-Tarjan O(VE Ig(¥E))

Table 1: Complexity of known maximum flow algorithms

Before proceeding notice thafigure 7 assumes that
PmaX(Rt(i)) n PmaX(Rt(i-l)) O Pmax(Rt(i))- As we will see this

is indeed the case. The consequence of this is that as soon

as Pmax(Ryi.1)) has been determined and accounted for in
the envelope calculation, the subnetwork B(R.1))
consisting of all events iPma(Ryi1)) and all incoming
and outgoing edges can be deleted. This allows the
computation ofPrax(Ry))—Pmax(Ryi-yy) directly from the
maximum flow of F(Ry;-Pmax(Ry-1y)) which can save
significant work.

The second efficiency improvement is computing the
maximum flow of F(Ryj)-Pmad{Ryi)) by incrementally
modifying the flow of F(Ryj1)-Pmax(Ryi-2))) during the
deletion of events i§(Cy;) and the addition of events in
O(Ry)) while maintaining the maximum flow property.

Incremental Modification of Maximum Flow

Let us focus on modifications of the flow network that
preserve the maximum-flow. To do so we introduce the
concept of aprefix and postfix of a resource increment
flow network F. Consider a partition of events in the
network in two event setfost(F) and Pref(F). We say
that Post(F) is a postfix ofF andPref(F) is a postfix ofF

if for each pair of eventg,[0Post(F) and e,00Pref(F), |&

e1| > 0. It is immediate to see that for any flow Bfit can
only be f(e,, e)<0. Therefore the residual network
contains an edge; - e; only if there is an edge; » &, in
the flow network and there is a positiVée;, &) passing
through it.

We can see tha¥(Cy;)) is a prefix of F(A) whereA is any
subset ofRy.yy that containsd(Cy;). In fact, consider a
pair of eventse, O &Cy;)) ande, O A - &(Cy)). From the
definition of §(Cy;) we havelt(e;) = t andlt(e;) = t+1.
From the triangular inequalitit(e;) < It(ey) + |& €| we
can deducde, e| = lt(ey) - It(ep) 2t +1-t=1>0.A
similar argument applies to demonstrate tB¢R;) is a
postfix of F(B) whereB is any subseRy; that contains

S(Rys)-

We now introduce two flow modification operationffow
reductionandflow expansion.

Cyi-n)

- Ry

R

3(Cip)
3(Rip)

/_, \ Prax (Re-1)
Prmax (Riy)

Ema(t(i-1))
Ema(t(i))

Figure 7 : Incremental change for set of pending events

Flow contraction: Consider a networlE(A), a flow f for

F(A) and a prefix ofA, Pref(A). Flow contraction consists

of the following two steps:

1)while there is a flow-shifting path in the residual
network connecting a event inPref(A) to an €
event in A-Pref(A), push flow along the path and
update the residual network accordingly;

2)while there is a reducing path in the residual network
connecting are event inPref(A) to ane” event inA-
Pref(A), push flow along the path and update the
residual network accordingly.

Lemma 5: If the flow f,ax is maximum forF(A), flow
contraction produces a maximum flow fiefA-Pref(A)).
Proof: If fax is maximum, the flow”’ produced at the end
of step 1 is still a maximum flow foF(A). This because
flow shifting does not affecf({s}, A) since no flow is
pushed back through any edifs, €). At the end of step 2
we will have a flow f’. Note however that any
modification of the residual network in step 2 can only
eliminate existing edges and therefore eliminate paths
Sincef’ maximality implies that there are no augmenting
paths in it going to eventgsJA-Pref(A), there will be no
such augmenting paths i either. Thereford” will be
maximum inF(A- Pref(A)).O

Note that in achieving the maximum flow foF(A-
Pref(A)) it is always better to us flow-shifting paths before
reducing paths, since if flow needs to be moved from

Pref(A) to A-Pref(A) to achieve optimality, a flow-

pertaining to Ependa. The function Network_Reduction

shifting path is always shorter than the concatenation of a deletes from the network the portion pertaining t®max.

reducing and an augmenting path.

Flow expansion:Consider a networkE(A), a postfix of
A, Post(A)), a flow f for F(A-Post(A)). Flow expansion
consists of the following steps:
e while there is an augmenting path in the residual
network ofF(A) connecting are” event inPost(A)to
an € event inA, push flow along the path and update
the residual network accordingly.

It is clear that flow expansion produces a maximum flow
fmax for F(A). Also, if the starting flow forF(A-Pref(A)) is

a maximum flow, flow augmentation will minimize work.
This is important in our application of maximum flow to a
sequence of n F(Ryy) problems since re-doing
unnecessary work may negatively impact asymptotic
complexity.

Flow Network Reduction

Now we will show that it is always safe to eliminate any
events inPmax(Ry.1)) from consideration once their impact
on Lmax(t(i-1)) has been recorded. Consider the set
8(Ci()) nPmax(Ryi-1)). The effect of these events is already
included in Lna(t(i-1)) and therefore their contribution
does not need to be included lnma(t(i)). Let us now
consider the effect that flow reduction applied to these
events has on the maximum flow B{Ry.1) n Ry). From
the property of the predecessor set with maximum
resource level increment, we know th#e;,e)=0 and
flez,e)=0 with € 0Pma(Ryiy) and e0PmaxdRy-1)-
Therefore, the residual network for the maximum flow of
F(Ryi.1)) does not have any edges—e;. Also, since alle

O Pmax(Ri-1)) are saturatedr (ax(€)=0), there cannot be
any edgee; »t in the residual network. Therefore, there
cannot be any flow shifting and the only way to push flow
back from ane'd Pmax(Ry1)) is to do so through ae’d
Pmax(Rii-1y). Therefore, flow changes during flow
contraction due to events iRna(Ry.1y) do not affect the
rest of the network.

Consider nowPmax(Ryi-1))—0(Cyiy). We know that after
contraction the flow is maximum forF(Ry.1)n Ryg).
Therefore all € OPmax(Ryi-1))—8(Cy) are still saturated.
Also, there will be at least one*l:leax(Rt(i_l))-é(Ct(i))
with rmax(€)>0. If we now addd(Ryy) and apply flow
expansion, we know that throughout the process there will
be no augmenting path exiting frome OPmax(Ry-
1))—0(Cy)). At the end of the proces®max(Rii-1))—0(C))

will still be isolated and therefore A(Pmax(Ryi-
1))—0(Cy))>0. Therefore Pra(Ryg)) OPmax(Ry-1))—8(Cy))-
Therefore A(Pmax(Rig-1y)) Will be part of bothL max(t(i-1))
and L max(t(i)). Moreover, the presence &.(Ryi.1)) has

no effect on the flow modification operations and therefore
all events inPrax(Ry-1y) together with their incoming and
outgoing edges can be safely eliminated from any flow
network considered by the algorithm aftgfRy.1)).

Figure 8shows the pseudocode of the algorithm. Here we
assume that after executing flow contraction , the function
Flow_Contraction function also deletes from the netwaFk
the portion pertaining to the events mEciose. Similarly

we expect Flow_Expansion to add to F the portion

Finally, Extract P_max finds the Ppax in the maximum
flow of F by collecting the events that are reachable in the
residual network oF from eache” with r ,,,(€")>0.

Complexity Analysis

Now we can show that the complexity of
Resource_Envelope is asymptotically the same as running
a flow algorithm over the flow network(R) for the entire
cR-STN. We demonstrate this for the Ford-Fulkerson
method. This is the simplest maximum flow method and
tends not to perform well when the internal “pipes” of the
flow network have bottlenecks (Cormen, Leiserson, Rivest
1990). However, this is not true fdf(R) in which the
capacity of all internal pipes ises. Therefore in our case
the Ford-Fulkerson method should perform well. The
complexity of Ford-Fulkerson i©(E |fnad), whereE is
the number of edges in the flow network afigs,| is the
amount of the maximum flow pushed through the
network.

Resource_Envelope (R, Pred(R))

{ Loa:=0; [* envelope level at previous iteration time */
Pmax = 0 [* temporary variable to hold Prmax */
Envelope := J; I* envelope profile, a list of pairs e=<t, L> where t is the

time at which the envelope reaches level L. The
envelope stays constant at L until the time of the
following entry in the list ~ */
F:=0; I* auxiliary flow graph for F(Re)-Pmax(Rei-1)*/
E := {sorted list in ascending order of t of triples <Eciose, Epend, t> where Eciose
is the set of events e in Pred(R) such that It(e) = t and Epend is the list
of events e in Pred(R) such that et(e) = t};
t:=0
while (E is not empty)
{ Ewr :=0;
p = pop(E);
ti=pt;
F := Flow_Contraction(F, p.Eciose);
F := Flow_Expansion(F, p.Epend, Pred(R));
Pmax := Extract_P_max (F);
F := Network_Reduction(F, Pmax);
Lnew := Loid + A(Eciose) + A(Pmax);
Envelope := append (<t, Lrew>, Envelope);
Lotd := Lnew;
} }

Figure 8: Maximum resource envelope algorithm.

Let us consider separately the total cost of the three flow
propagations irfflow_Expansion andFlow_Contraction: the

one across augmenting paths, the one across flow-shifting
paths and the one across reducing paths.

Consider the propagation across augmenting paths.
Consider the total flow that we will be able to push from
the source throughout these propagations. Since when we
push flow frome” events ind(Ry;), some eventg may
have become unavailable (through deletion) or saturated
(due to flow shifting. Therefore the total flow we can
push inFlow_Contraction is no greater thaffyay in F(R).
Moreover, the set of edges over which the search for
augmenting paths is conducted is always not greater in

each invocation ofFlow_Expansion than in the the
application of maximum flow to the entire~(R).
Therefore, the total cost &fow_Expansion is O(E |fimax)
Consider now the propagation across flow-shifting paths
in Flow_Contraction. Consider an auxiliary flow graph
Shift(R) built as follow: for eachd(Cy;)) consider all edges
in the flow-shifting paths before the application of
Flow_Contraction(F, &Cy;)) and for each pair of events
and e, (including o and 1) add the link with maximum
capacity in some of the flow-shifting paths across all
invocations of Flow_Contraction. The total number of
edges inShift(R) is bounded by2 E + 2 V, since this is
the maximum number of edges in a residual network.
Considering now pushing flow from a@ in &Cy;), we
notice that the pipes that are availableShift(R) are no
smaller than those available in the flow-shifting paths
during the execution oFlow_Contraction. Moreover, the
lengths of the paths is no shorter &hift(R) than in each
invocation ofFlow_Contraction since events are not deleted
in Shift(R). Finally, the total flow that can be shifted is no
greater than|fya, since this is an upper bound of the
maximum amount of flow that reachasfrom somee'.
From this argument we can see that the total amount of
work done during the flow-shifting steflow_Contraction

is bounded byO(E |fnax). A similar argument applies to
the flow reduction step inFlow_Contraction with its
complexity again bound b(E |fnaxl). Therefore the total
cost of Flow_Contraction and Flow_Expansion in
Resource_Envelope is bounded by O(E [fnax|)-

Considering the other steps iResource Envelope, the
sorting step to initializeE is O(V IgV), and the total cost
of Extract P_max and of incrementally constructing and
deleting the flow networkis 3 O(E). Under the reasonable
assumption that the asymptotic cost of flow computation
dominatesO(V IgV), the total cost oResource_Envelope

is O(E |fmaxl), 1.€., it has the same asymptotic complexity
than running the flow algorithm once over the entire
F(R).

Conclusions

In this paper we describe an efficient algorithm to
compute the tightest exact bound on the resource level
induced by a flexible activity plan. This can potentially
save exponential amounts of work with respect to looser
bound computations. Future work includes testing the
practical effectiveness of resource envelopes in scheduling
search for problems with multi-capacity resources. This
includes both direct use as a backtracking and termination
criterion in a constrained based scheduling algorithm for
multi-capacity resources and the additional development
of effective variable and value ordering heuristics based on
resource envelopes.

References

J.C. Beck, A.J. Davenport, E.D. Davis, M.S. Fox. Beyond Contention:
Extending Texture-Based Scheduling Heuristic®ioceedings oAAAI
1997, Providence, RI, 1997.

A., Cesta, A. Oddi, S.F. Smiti, Constraint-Based Method for Resource
Constrained Project Scheduling with Time Windo@#1U RI Technical
Report, February, 2000.

H. S.F. Cooper JrThe Loneliness of the Long-Duration Astronadiir; &
Space/Smithsoniadune/July 1996, available at
http://www.airspacemag.com/ASM/Mag/Ind&206/Jdlda.html

T.H. Cormen, C.E. Leiserson, R.L. Rivesttroduction to Algorithms
Cambridge, MA, 1990.

R. Dechter, I. Meiri, J. Pearl. Temporal Constraint NetwoAgsificial
Intelligence 49:61-95, May 1991.

P. Laborie, Algorithms for Propagating Resource Constraints in Al Planning
and Scheduling: Existing Approaches and New ResBitsceedings of
ECP 2001,Toledo, Spain, 2001.

P. Morris, N. Muscettola, T. Vidal. Dynamic Control of Plans with
Temporal Uncertainty, iRroceedings of IJCAI 200Beattle, WA2001

N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in
Proceedings oAAAI 1994 Seattle, WA1994.

W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology,
994,

N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop
scheduling. PhD Thesis, Carnegie Mellon University, CMU-CS-91-102,
1991.

I. Tsamardinos, N. Muscettola, P. Morris. Fast Transformation of Temporal
Plans for Efficient Execution. iRroceedings oAAAI 1998,Madison, WI,
1998.

